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Abstract. The competition between spin glass (SG), antiferromagnetism (AF) and Kondo effect is studied
here in a model which consists of two Kondo sublattices with a Gaussian random interaction between
spins in different sublattices with an antiferromagnetic mean J0 and standard deviation J . In the present
approach there is no hopping of the conduction electrons between the sublattices and only spins in different
sublattices can interact. The problem is formulated in the path integral formalism where the spin operators
are expressed as bilinear combinations of Grassmann fields which can be solved at mean field level within
the static approximation and the replica symmetry ansatz. The obtained phase diagram shows the sequence
of phases SG, AF and Kondo state for increasing Kondo coupling. This sequence agrees qualitatively with
experimental data of the Ce2Au1−xCoxSi3 compound.

PACS. 05.50.+q Lattice theory and statistics; Ising problems – 64.60.Cn Order disorder transformations;
statistical mechanics of model systems

1 Introduction

It is recognized that there is a strong competition between
the Kondo effect and the RKKY interaction in Kondo lat-
tice systems [1]. A transition from a magnetically ordered
phase to a heavy fermion one, described by a Fermi-Liquid
behaviour, has been observed in many Ce or Yb com-
pounds and extensively studied from a theoretical point of
view. There is a quantum critical point (QCP) at the tran-
sition and non-Fermi liquid behaviors are also observed
near the QCP [2]. The role of disorder has been studied by
different approaches including a “Kondo disorder” model
describing a broad distribution of Kondo temperatures [3]
or the extensive study of the so-called “quantum Grif-
fiths” behaviour [4]. On the opposite, the transition from
a metallic spin glass phase to a paramagnetic or Kondo
phase has been studied recently by using the quantum ro-
tor spin glass model [5] and the existence of an anomalous
behavior near T = 0 has been observed in the transition
between a metallic paramagnetic and a metallic spin glass.

Particularly, spin glass (SG) and Kondo state
have been found together in some Cerium alloys like
CeNi1−xCux [6], Ce2Au1−xCoxSi3 [7] and in some dis-
ordered Uranium alloys such as UCu5−xPdx [8] or

a e-mail: ggarcia@ccne.ufsm.br

U1−xLaxPd2Al3 [9]. In the first case, there is an anti-
ferromagnetic (AF) phase for low contents of Ni. When
the Ni doping is increased the phase diagram becomes
more complex. For x < 0.8, the sequence of phases
SG-ferromagnetism arises when the temperature is low-
ered and a Kondo state exists for x < 0.2. The alloys
Ce2Au1−xCoxSi3 exhibit a phase diagram with a sequence
of SG, AF and non magnetic Kondo phases with increasing
the cobalt concentration at low temperature; in the high
doping situation, the Néel temperature seems to tend to
zero. In the two previously mentioned cases of disordered
alloys [8,9], the AF, SG and NFL phases have been ob-
tained at low temperatures for different concentrations;
in particular, the sequence AF-NFL-SG occurs with in-
creasing x in UCu5−xPdx alloys [8] and the opposite se-
quence AF-SG-NFL with increasing x in U1−xLaxPd2Al3
alloys [9].

Thus, the results previously mentioned evidence a
quite complicated interplay among the Kondo effect and
the RKKY interaction when disorder and frustration are
present. Recently, a theoretical effort has been done to
understand how a spin glass phase emerges in a Kondo
lattice model with an intrasite exchange interaction and
an intersite long range random interaction among the lo-
calized spins [10]. The mentioned model has been extended
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to produce also a ferromagnetic order [11]. A particularity
of our model [10,11] compared to those discussed in refer-
ence [5] is that we do not consider quantum fluctuations
by coupling only the Sz components of the localized spins
in the spin glass term of the Hamiltonian, thus being un-
able to discuss a QCP at T = 0. One important remaining
issue would be to obtain a description of the interplay be-
tween antiferromagnetism, Kondo phase and spin glass.
The first step in that direction would be to produce a
theory at mean field level able to mimic some important
aspects, for instance, the sequence of magnetic phases of
Ce2Au1−xCoxSi3 in terms of a minimum set of energy
scales related to the fundamental mechanisms present in
the problem. In this work this set is J0 (the random inter-
site average), J (the random intersite variance) and JK

(the strength of the Kondo coupling). In the following,
we take a constant JK and a Gaussian distribution of the
intersite interaction with a random intersite interaction
with average J0 and variance J . Thus, we will not take
values of JK and TK given by a random distribution as in
the work of Miranda et al. [3].

In view of that, the aim of this paper is to present
a mean field theory to study the interplay among dis-
order and antiferromagnetic ordering in a Kondo lattice
providing the necessary refinements in the previous the-
ory [10,11]. The model studied is a two Kondo sublattice
with an intrasite exchange interaction and an intersite ran-
dom Gaussian interaction only between localized spins in
two different sublattices [12]. We consider here that there
is no hopping of the conduction electrons between the two
different sublattices; this assumption, which is used here
to really simplify the calculations, does not modify the re-
sults since the different AF or SG ordering are in fact es-
sentially due to the localized spins. The possible AF or SG
ordering is, therefore, entirely related to the coupling of lo-
calized spins between the two sublattices. This fermionic
problem is formulated by writing the spins operators as
bilinear combinations of Grassmann fields and, through
the static approximation and the replica formalism, the
partition function is obtained, as already introduced to
treat at mean field level the spin glass, Kondo effect and
ferromagnetism in references [10] and [11].

The Kondo effect and the RKKY interaction origi-
nate from the same intrasite exchange interaction, but
the necessity of considering an additional intersite ex-
change term has been already recognized [13] and the
full Hamiltonian with both terms has been extensively
used to describe the Kondo lattice [14,15]. Moreover, the
presently studied model has explicitly a random coupling
term among localized spins in order to describe the spin
glass situation [10,11]. The exchange terms cannot be con-
sidered as completely independent from each other and a
relationship giving the intersite exchange integral varying
as the square of the Kondo local exchange integral JK has
been introduced in order to mimic the (JK)2 dependence
of the RKKY interaction [15]. In fact the relationship cor-
responds to an approximate representation of the intersite
interaction, but we will use it in the last section of our pa-
per in order to have a better agreement with experiment

for some disordered Cerium alloys. Recently, the Doniach
diagram has been revisited and the suppression of the AF
and SG phases investigated, although these orders have
been considered as two independent problems [16].

This paper is structured as follows. In Section 2 the
model is introduced and developed in order to get the
free energy and the corresponding saddle point equations
for the order parameters. In Section 3, as mentioned in
the previous paragraph, a relationship among J0, J and
JK is introduced allowing to solve the order parameter
equations and to build up a temperature versus JK phase
diagram showing the sequence of phases SG-AF-Kondo
state. The conclusions are presented in the last section.

2 General formulation

The model considered here consists in two Kondo sublat-
tices A and B with a random coupling only between local-
ized spins in distinct sublattices [12]. Furthermore, there
is no hopping of conduction electrons between the sublat-
tices as previously explained. The corresponding Hamil-
tonian is given by:

H− µN =
∑

p=A,B

[∑
i,j

∑
σ=↑↓

tij d̂
†
i,p,σ d̂j,p,σ +

∑
i

εf
0,pn̂

f
i,p

+ JK

(∑
i

Ŝ+
i,pŝ

−
i,p + Ŝ−

i,pŝ
+
i,p

)]
+
∑
ij

JijŜ
z
i,AŜ

z
j,B (1)

where i and j sums run over N sites of each sublattice.
The intersite interaction Jij is assumed to be a random
quantity following a Gaussian distribution [12]

P(Jij) =
1
J

√
N

64π
exp

{
− (Jij + 2J0/N)2

64J2
N

}
. (2)

An anti-ferromagnetic solution for the present choice of Jij

can be found for J0 > 0. The case J0 < 0 produces a com-
plex phase diagram with spin glass, ferromagnetic, mixed
phase (a spin glass with spontaneous magnetization) [11]
and a Kondo state as defined in the reference [10].

The spin variables present in the equation (1) are
defined closely to reference [10] modified for the case
of two interacting distinct sub-lattices given as: ŝ+i,p =
d̂†i,p,↑d̂i,p,↓↑ = (ŝ−i,p)

†, Ŝ+
i,p = f̂ †

i,p,↑f̂i,p,↓ = (Ŝ−
i,p)

† and

Ŝz
i,p =

1
2

[
f̂ †

i,p,↑f̂i,p,↑ −f̂ †
i,p,↓ f̂i,p,↓

]
where d̂†i,p,σ, d̂i,p,σ

(f̂ †
i,p,σ, f̂i,p,σ) are the creation and destruction operators

for conduction (localized) fermions.
The partition function can be given by using Grassman

variables ψi,p,σ(τ) for the localized fermion and ϕi,p,σ(τ)
for the conducting ones:

Z =
∫ ∏

p=A,B

D(ψ∗
i,p,σψi,p,σ)

∫ ∏
p=A,B

D(ϕ∗
i,p,σϕi,p,σ) eA (3)
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where the action is A = A0 +AK +ASG with

A0 =
∑

p=A,B

∑
i,j

∑
ω

(
γ0

ij,p(ω)
)−1 [

ϕ∗
i,p,↑(ω)ϕj,p,↑(ω)

+ ϕ∗
i,p,↓(ω)ϕj,p,↓(ω)

]
+

∑
p=A,B

∑
ω

∑
ij

(
g0

ij,p(ω)
)−1 [

ψ∗
i,p,↑(ω)ψj,p,↑(ω)

+ ψ∗
i,p,↓(ω)ψj,p,↓(ω)

]
(4)

and [
γ0

ij,p(ω)
]−1

= (iω − βεc
0,p)δij − tij (5)[

g0
ij,p(ω)

]−1
= (iω − βεf

0,p)δi,j . (6)

The energies εc
0,A = εc

0,B = εc
0 and εf

0,A = εf
0,B = εf

0 are
referred to the chemical potentials of the conduction and
localized bands, respectively.

The actions ASG and AK are given by

ASG = β
∑
ij

∑
ν

JijS
z
i,A(ν)Sz

j,B(−ν) (7)

and

AK = β
JK

N

∑
σ=↑↓

∑
p=A,B

[
N∑

i=1

∑
ω

ϕ∗
i,p,−σ(ω)ψi,p,−σ(ω)

]

×
[

N∑
i′=1

∑
ω′

ψ∗
i′ ,p,σ

(ω
′
)ϕi′ ,p,σ(ω

′
)

]
(8)

with Matsubara’s frequencies ω = (2m+1)π and ν = 2mπ
(m = 0,±1,±2, . . .).

The static approximation will be used in equation (7)
and equation (8) to solve this problem at mean field level.
In that spirit, the Kondo state at one particular sub-lattice
s is caracterized by the complex order parameter λp,σ = 1

N∑
i,ω

〈
ϕ∗

i,p,σ(ω)ψi,p,σ(ω)
〉

(p = A,B) which is introduced
in the present theory through the identity

δ

(
Nλp,σ −

∑
ω

N∑
i=1

ϕ∗
i,p,σ(ω)ψi,p,σ(ω)

)
=
∫ ∏

σ

dvp,σ

2π

×exp

{
i
∑

σ

vp,σ

[
Nλ∗p,σ −

∑
ω

N∑
i=1

ϕ∗
i,p,σ(ω)ψi,p,σ(ω)

]}
.

(9)

Its conjugate, λ∗p,σ, can be also introduced by a simi-
lar identity. From now on, it is assumed that λp,σ ≈ λp

(λ∗p,σ ≈ λ∗p) [10,11].
Therefore, the partition function given in equa-

tions (3–8), after using the integral representation for the
delta functions, is

Z = exp{−2NβJK(|λA|2 + |λB |2)}Z(stat) (10)

where

Z(stat) =
∫ ∏

p=A,B

D(ψ∗
pψp)

∫ ∏
p=A,B

D(ϕ∗
pϕp)

× exp
[
A0 +A

(stat)
SG +AK

]
(11)

and

AK =
∑

σ

βJK

[∑
ω

∑
iA

λA,−σψ
∗
iA,σ(ω)ϕiA,σ(ω)

+ λ∗A,σϕ
∗
iA,σ(ω)ψiA,σ(ω)

+
∑
ω

∑
jB

λB,−σψ
∗
jB ,σ(ω)ϕjB ,σ(ω)

+ λ∗B,σϕ
∗
jB ,σ(ω)ψjB ,σ(ω)

]
. (12)

At this stage, the fluctuations in time and space are
explicitly neglected. That means that in the sum over Mat-
subara’s frequencies, particularly for the spin part of ac-
tion A(stat)

SG , only the term ν = 0 is kept in equation (7).
The conduction electrons can be integrated in equa-

tion (11) to give

Z(stat)

Z0
=
∫ ∏

p=A,B

D(ψ∗
pψp) eASG+Aeff (13)

where

Aeff =
∑
i,j

∑
ω,σ

Ψ †
i (ω)

[
g

ij
(ω)
]−1

Ψ j(ω) (14)

with[
g

ij
(ω)
]−1

=[ [
g0

ij,A(ω)
]−1 − FA(ω) 0

0
[
g0

ij,B(ω)
]−1−FB(ω)

]
(15)

Ψ †
i (ω) =

[
ψ∗

i,A,σ(ω) ψ∗
i,B,σ(ω)

]
Ψ j(ω) =

[
ψj,A,σ(ω)
ψj,B,σ(ω)

]
(16)

Fp(ω) = β2J2
K |λp|2

∑
k

eik(Ri−Rj)γk(ω) (17)

where
[
g0

ij,p(ω)
]−1 is given in equation (6) and

γk(ω) =
1

(iω − βε0) − βεk
· (18)

The free energy is given by the replica method

βF = βJK(|λA|2 + |λB|2)

− lim
n→0

1
2Nn

[〈〈
Z(stat.)(Jij)

〉〉
CA

− 1
]

(19)
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where the configurational average 〈〈 ... 〉〉
CA

is performed
with the Gaussian distribution given by equation (2) ap-
plied in equation (13) which gives

〈〈
Z(stat.)(Jij)

〉〉
CA

=
∫
D(ψ∗ψ) eAeff 〈〈Z

SG
〉〉 (20)

where

〈〈Z
SG

〉〉CA =
∏
i,j

〈〈
exp

(
βJij

∑
α

Sz
i,A,αS

z
j,B,α

)〉〉
CA

.

(21)
Therefore, the resulting averaged partition function

can be linearized by using the usual Hubbard-Stratonovich
transformation and introducting auxiliary fields of the
spin glass part [12]. The details of this procedure are given
in the Appendix.

The free energy can be found using the averaged parti-
tion function (see Appendix) in equation (19). Thus, one
gets,

βF =βJK(|λA|2 + |λB |2) − β2 J
2

2
qAqB

+ β2 J
2

2
(q̃Aq̃B) − βJ0mAmB

− lim
n→0

1
2Nn

∫ ∞

−∞

N∏
i=1

Dξi,ADξi,B
∏
α

∫ ∞

−∞
Dzα

i,ADz
α
j,B

× exp

[∑
w,σ

ln det
[
G

ij
(ω|hα

i,p)
]−1

]
(22)

where the
[
G

ij
(ω|hα

i,p)
]−1

in equation (22) is given by

[
G

ij
(ω|hα

i,p)
]−1

=[
(iω−βεf0−σhα

i,A)δi,j−FA(ω) 0
0 (iω−βεf0−σhα

i,B)δi,j−FB(ω)

]
(23)

with Fp defined in equation (17) and hα
i,A and hα

i,B being
random Gaussian fields (see Eq. (34) from Appendix) ap-
plied to the sites of one sublattice (A or B) which depends
on the parameters of the other sub-lattice. At this point,
the static susceptibility χp can be introducted related with
replica symmetry diagonal order parameter q̃p = χ̄p + qp
where χ̄p = χp/β.

The central issue here is to adopt the proper decou-
pling approximation which allows one to calculate the

matrix
[
G

ij
(ω)
]−1

[10,11]. The elements given in equa-
tion (23) are referred to the original sublattice A (B)
where to each site i there is a random Gaussian field
hα

i,A (hα
i,B) applied. The decoupling procedure is to con-

sider these random fields hα
i,A (hα

i,B) as applied in two
fictitious Kondo sub-lattices. Therefore, in each site µ of
the new sublattice, the applied field hα

i,A (hα
i,B) is con-

stant. That is equivalent to replace the Green’s function

[
G

ij
(ω|hα

i,p)
]−1

by
[
Γ

µν
(ω|hα

i,p)
]−1

in equation (23). It is,
therefore, possible to go to the reciprocal space, where it is
assumed a constant band ρ(ε) = 1

2D for −D < ε < D for
the conduction electrons in each sublattice. The sum over
the Matzubara frequencies in equation (22) can be done
following a standard procedure. Thus, the free energy is
found to be

βF =βJK(|λA|2 + |λB |2) +
β2J2

2
χ̄Aχ̄B +

β2J2

2
(χ̄AqB

+ χ̄BqA) − βJ0

2
mAmB − 1

2

∫ ∞

−∞
DξiA

∫ ∞

−∞
DξjB

× ln


 ∏

p=A,B

∫ ∞

−∞
Dzpe

E(hp)


 (24)

with

E(hp) =
1
βD

∫ βD

−βD

dx


cosh

(
x+ hp

2

)

+ cosh

√(
x− hp

2

)2

+ β2J2
K |λp|2


 . (25)

The saddle point equations for the order parameters
qp,mp, χ̄p and |λp| [10] follow from equation (24) and (25).

3 Results

The numerical solutions of equations for the order param-
eters qp, χ̄p, mp (p = A,B) and |λp| allow one to build
up a phase diagram of temperature T versus the set of
relevant energy scales J0, J and JK defined in Section 2.
The thermodynamic phases are identified as:(a) an anti-
ferromagnetic (AF) phase corresponding to mA = −mB

or m3 = 0 (see Eqs. (29–32)); (b) a spin glass phase for
qA �= 0 and qB �= 0 (q3 �= 0); (c) a Kondo state given by
|λA| �= 0 and |λB | �= 0.

The phase diagrams obtained by the present calcula-
tions are derived for several sets of parameters JK/J and
J0/J considered firstly as independent from each other.
But, as it was discussed in the introduction, the intrasite
and intersite exchange terms cannot be considered as com-
pletly independent from each other and a J2

K-dependence
of J0 was introduced in order to mimic the RKKY inter-
action [15].Thus, a phase diagram is shown in Figure 1 by
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Fig. 1. The phase diagram T/J versus JK/J showing the
sequences of phases SG (Spin Glass), AF (Antiferromagnetism)
and a Kondo state. The variance J is kept constant. The dotted
line means the “pure” Kondo temperature.

keeping J constant, taking then:

J0

J
= α

(
JK

J

)2

. (26)

and by choosing finally α = 0.0051. The factor α was
chosen here to have the AF phase starting at JK/J ≈ 12.

The numerical solutions of the order parameters yield
the sequence of phases SG-AF-Kondo shown in Figure 1.
The Kondo temperature TK is decreasing for decreasing
values of JK/J down to J∗

K/J ≈ 15. From this point on-
wards there is a phase transition leading to antiferromag-
netic order with the Néel temperature TN monotonically
decreasing with JK/J . For still smaller values of JK/J
(and therefore smaller values of J0/J) the spin glass be-
haviour becomes dominant.

Thus, in this mean field theory it is possible to identify
three sorts of distinct regimes depending on the strength
of the Kondo coupling JK . The first one (for high JK)
is the complete screening of the localized magnetic mo-
ments due to the Kondo effect, which is caracterized by
the order parameter |λp| related to the formation of d-f
singlet throughout the whole two sublattices. In the sec-
ond one (for decreasing JK) , the magnetic moments of
one particular sublattice, for instance sublattice A, survive
to the screening process (the complete unscreening means
|λA| = 0 and |λB| = 0) and start to be in an antipar-
allel alignment with an internal field hα

A, which depends
on the magnetization and susceptibility of the sublattice
B, until this internal field is spread out to the entire sub-
lattice producing the AF order. In the last regime ( for
JK/J < 12 or J0 < 0.734J), the effects of randomness
begin to be dominant. In the effective field hα

p (p = A,B),
the replica spin glass order parameter qp′ (p

′
= B,A)

component starts to be non-null indicating the non-trivial
ergodicity breaking leading to a spin glass phase at the
transition temperature Tf . Finally, let us remark that we
never obtain theoretically mixed phases where there is the

coexistence of the Kondo phase with the other phases.
This is due to the mean field approximation used here, as
already observed [1,10,11].

The experimental phase diagram of the alloy
Ce2Au1−xCoxSi3 [7] can be addressed if the JK coupling
is associated with the content of Co. The obtained result
shown in Figure 1 displays the same sequence of phases
at low temperature as the experimental one. In brief, in-
creasing JK favours the transition from a SG phase to a
AF ordering and then to the screening of the localized
moments. Thus, this mean field description is able to ac-
count for experimental aspects of Ce2Au1−xCoxSi3 at low
temperatures.

There is some disagreement related to the location
of the AF line transition. The experimental behavior [7]
shows the Néel temperature TN decreasing apparently to-
wards a quantum critical point (QCP) with increasing
Co doping. Howewer, recently the spin flipping has been
simulated with the presence of a transversal field in the
x-direction to study a QCP in fermionic spin glass [17].
The same approach has been extended to investigate the
spin glass freezing in a Kondo lattice [18]. Hence, this
method could also be used in the present model in order to
clarify the role of the QCP in the interplay between spin
glass and antiferromagnetism in a Kondo lattice. That will
be subject for future investigations.

In conclusion, we have studied in detail the competi-
tion between SG, AF and Kondo phases in a mean field
approach of Kondo-lattice disordered alloys. Using the pe-
culiar relationship (26) between the different parameters
of the model, we have obtained a phase diagram show-
ing the sequence SG-AF-Kondo phases in good agreement
with the experimental phase diagram of the disordered al-
loys Ce2Au1−xCoxSi3, if we assume that JK increases with
increasing Cobalt concentration. Other phase sequences,
involving also SG, AF and Kondo phases, obtained in dis-
ordered Uranium alloys, are not accounted for, at present,
by our model. But the choice of parameters and their re-
lationship with the varying concentration in these alloys
are really delicate questions which are not answered at
present. Moreover, in such Uranium systems, the Kondo
phases have clearly a Non-Fermi liquid behavior which is
not described here. Finally, the present model can account
for the presence of SG, AF and Kondo phases, but further
work is necessary in order to obtain a better agreement
with experimental data for Cerium and Uranium disor-
dered alloys.

The numerical calculations were performed at LANA (Depar-
tamento de Matemática, UFSM) and at LSC (Curso de Ciência
da Computação, UFSM). This work was partially supported
by the brazilian agencies FAPERGS (Fundação de Amparo à
Pesquisa do Rio Grande do Sul) and CNPq (Conselho Nacional
de Desenvolvimento Cient́ıfico e Tecnológico). One of us (B.C.)
thanks also the CNRS-CNPq french-brazilian cooperation.
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Appendix

The averaged partition function can be given by [12]:

〈〈Z
SG

〉〉 =
∫ ∏

p=A,B

∏
α

√
NβJ0

2π
dMα

p

×
∫ ∏

p=A,B

∏
αβ

√
Nβ2J2

2π
dQαβ

p

×
∫ ∏

αβ

√
Nβ2J2

2π
dQαβ

3

∫ ∏
α

√
NβJ0

2π
dMα

3

× exp
{
−N

[
− 1
N

ln Λ(Mα
3 , Q

αβ
3 )

+
β2J2

2

∑
αβ


(Qαβ

3 )2 +
∑

p=A,B

(Qαβ
p )2




+
βJo

2

∑
α


(Mα

3 )2 +
∑

p=A,B

(Mα
p )2








(27)

where the Λ(Mα
3 , Q

αβ
3 ) is defined as

Λ =
∫
D(ψ∗ψ) exp



∑
α

∑
i,j

∑
ωσ

× Ψ †
i,α(ω)

[
g

ij
(ω)
]−1

Ψ j,α(ω)

+ iβJ0

∑
α


∑

i,A

Sz
i,A,α +

∑
j,B

Sz
j,B,α


Mα

3

+ βJ0

∑
α


∑

i

Sz
i,A,αM

α
A +

∑
j

Sz
j,B,αM

α
B




+ 4iβ2J2
∑
αβ

[∑
i

(Sz
i,A,αS

z
i,A,β)Qαβ

A

+
∑

j

(Sz
j,B,αS

z
j,B,β)Qαβ

B




+ 4β2J2
∑
αβ

[∑
i

Sz
i,A,αS

z
i,A,β+

+
∑

j

Sz
j,B,αS

z
j,B,β


Qαβ

3


 . (28)

From equation (27) and (28), one finds the saddle point
solution for these auxiliary fields [12]:

Mα
3 =

i

N

〈∑
i

Sz
i,A,α +

∑
j

Sz
j,B,α

〉
= 2i mα

3 (29)

Mα
p =

1
N

〈∑
i

Sz
i,p,α

〉
= mα

p ; p = A, B (30)

Qαβ
3 =

4
N

〈∑
i

Sz
i,A,αS

z
i,A,β +

∑
j

Sz
j,B,αS

z
j,B,β

〉
= 2qαβ

3

(31)

Qαβ
p =

4i
N

〈∑
i

Sz
i,p,αS

z
i,p,β

〉
= iqαβ

p ; p = A, B (32)

It has been assumed, within the replica symmetry
ansatz for the auxiliary fields (see Eqs. (29–32)), that
qαβ
3 = q3, qαβ

p = qp and qαα
p = q̃p (analogously mα

3 = m3

andmα
p = mp). The sum over replica index produces again

quadratic forms which can be linearized by new auxiliary
fields. Thus, for Λ(m3, q3) one has

Λ =
∫
D(ψ∗ψ) exp



∑

i,j,ω,α

Ψ †
i,α(ω)

[
g

ij
(ω)
]−1

Ψ j,α(ω)




×
∫ ∞

−∞

N∏
i=1

Dξi,B
∏
α

∫ ∞

−∞
Dzα

i,B exp
[
hα

i,BS
z
i,B,α

]

×
∫ ∞

−∞

N∏
i=1

Dξi,A
∏
α

∫ ∞

−∞
Dzα

i,A exp
[
hα

i,AS
z
i,A,α

]
(33)

where the random field hα
i,p, introduced in the previous

equation, is defined as

hα
i,p = βJ

(√
2qp′ ξi,p +

√
2(q̃p′ − qp′ )zα

i,p

)
− βJ0mp′ (p �= p

′
) (34)

with Sz
i,p,α =

1
2

∑
ω,α,σ

σ(ψα
i,p,σ)∗(ω)ψα

i,p,σ(ω) and Dx =

(e−x2/2/
√

2π) dx.
The functional integral in equation (33) can be found

following standard procedure [19].
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